Рассчитать высоту треугольника со сторонами 150, 149 и 117
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 149 + 117}{2}} \normalsize = 208}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{208(208-150)(208-149)(208-117)}}{149}\normalsize = 108.02794}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{208(208-150)(208-149)(208-117)}}{150}\normalsize = 107.307753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{208(208-150)(208-149)(208-117)}}{117}\normalsize = 137.574043}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 149 и 117 равна 108.02794
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 149 и 117 равна 107.307753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 149 и 117 равна 137.574043
Ссылка на результат
?n1=150&n2=149&n3=117
Найти высоту треугольника со сторонами 121, 114 и 14
Найти высоту треугольника со сторонами 141, 124 и 97
Найти высоту треугольника со сторонами 149, 149 и 124
Найти высоту треугольника со сторонами 131, 104 и 80
Найти высоту треугольника со сторонами 39, 33 и 32
Найти высоту треугольника со сторонами 105, 95 и 65
Найти высоту треугольника со сторонами 141, 124 и 97
Найти высоту треугольника со сторонами 149, 149 и 124
Найти высоту треугольника со сторонами 131, 104 и 80
Найти высоту треугольника со сторонами 39, 33 и 32
Найти высоту треугольника со сторонами 105, 95 и 65