Рассчитать высоту треугольника со сторонами 150, 149 и 131
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 149 + 131}{2}} \normalsize = 215}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{215(215-150)(215-149)(215-131)}}{149}\normalsize = 118.149325}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{215(215-150)(215-149)(215-131)}}{150}\normalsize = 117.361663}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{215(215-150)(215-149)(215-131)}}{131}\normalsize = 134.383584}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 149 и 131 равна 118.149325
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 149 и 131 равна 117.361663
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 149 и 131 равна 134.383584
Ссылка на результат
?n1=150&n2=149&n3=131
Найти высоту треугольника со сторонами 132, 129 и 41
Найти высоту треугольника со сторонами 146, 139 и 113
Найти высоту треугольника со сторонами 115, 78 и 69
Найти высоту треугольника со сторонами 33, 25 и 25
Найти высоту треугольника со сторонами 146, 135 и 17
Найти высоту треугольника со сторонами 135, 104 и 93
Найти высоту треугольника со сторонами 146, 139 и 113
Найти высоту треугольника со сторонами 115, 78 и 69
Найти высоту треугольника со сторонами 33, 25 и 25
Найти высоту треугольника со сторонами 146, 135 и 17
Найти высоту треугольника со сторонами 135, 104 и 93