Рассчитать высоту треугольника со сторонами 150, 149 и 3
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 149 + 3}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-150)(151-149)(151-3)}}{149}\normalsize = 2.83777564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-150)(151-149)(151-3)}}{150}\normalsize = 2.81885714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-150)(151-149)(151-3)}}{3}\normalsize = 140.942857}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 149 и 3 равна 2.83777564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 149 и 3 равна 2.81885714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 149 и 3 равна 140.942857
Ссылка на результат
?n1=150&n2=149&n3=3
Найти высоту треугольника со сторонами 124, 95 и 54
Найти высоту треугольника со сторонами 121, 114 и 112
Найти высоту треугольника со сторонами 126, 101 и 48
Найти высоту треугольника со сторонами 131, 93 и 49
Найти высоту треугольника со сторонами 142, 136 и 135
Найти высоту треугольника со сторонами 133, 132 и 16
Найти высоту треугольника со сторонами 121, 114 и 112
Найти высоту треугольника со сторонами 126, 101 и 48
Найти высоту треугольника со сторонами 131, 93 и 49
Найти высоту треугольника со сторонами 142, 136 и 135
Найти высоту треугольника со сторонами 133, 132 и 16