Рассчитать высоту треугольника со сторонами 150, 92 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 92 + 70}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-150)(156-92)(156-70)}}{92}\normalsize = 49.3422904}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-150)(156-92)(156-70)}}{150}\normalsize = 30.2632715}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-150)(156-92)(156-70)}}{70}\normalsize = 64.8498674}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 92 и 70 равна 49.3422904
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 92 и 70 равна 30.2632715
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 92 и 70 равна 64.8498674
Ссылка на результат
?n1=150&n2=92&n3=70
Найти высоту треугольника со сторонами 139, 93 и 53
Найти высоту треугольника со сторонами 58, 48 и 15
Найти высоту треугольника со сторонами 89, 72 и 31
Найти высоту треугольника со сторонами 61, 51 и 13
Найти высоту треугольника со сторонами 116, 83 и 40
Найти высоту треугольника со сторонами 141, 108 и 49
Найти высоту треугольника со сторонами 58, 48 и 15
Найти высоту треугольника со сторонами 89, 72 и 31
Найти высоту треугольника со сторонами 61, 51 и 13
Найти высоту треугольника со сторонами 116, 83 и 40
Найти высоту треугольника со сторонами 141, 108 и 49