Рассчитать высоту треугольника со сторонами 150, 94 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 94 + 72}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-150)(158-94)(158-72)}}{94}\normalsize = 56.119642}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-150)(158-94)(158-72)}}{150}\normalsize = 35.168309}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-150)(158-94)(158-72)}}{72}\normalsize = 73.2673103}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 94 и 72 равна 56.119642
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 94 и 72 равна 35.168309
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 94 и 72 равна 73.2673103
Ссылка на результат
?n1=150&n2=94&n3=72
Найти высоту треугольника со сторонами 132, 127 и 64
Найти высоту треугольника со сторонами 126, 109 и 36
Найти высоту треугольника со сторонами 85, 75 и 23
Найти высоту треугольника со сторонами 134, 129 и 99
Найти высоту треугольника со сторонами 137, 135 и 34
Найти высоту треугольника со сторонами 142, 128 и 54
Найти высоту треугольника со сторонами 126, 109 и 36
Найти высоту треугольника со сторонами 85, 75 и 23
Найти высоту треугольника со сторонами 134, 129 и 99
Найти высоту треугольника со сторонами 137, 135 и 34
Найти высоту треугольника со сторонами 142, 128 и 54