Рассчитать высоту треугольника со сторонами 150, 95 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 95 + 86}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-150)(165.5-95)(165.5-86)}}{95}\normalsize = 79.8269179}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-150)(165.5-95)(165.5-86)}}{150}\normalsize = 50.557048}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-150)(165.5-95)(165.5-86)}}{86}\normalsize = 88.1808976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 95 и 86 равна 79.8269179
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 95 и 86 равна 50.557048
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 95 и 86 равна 88.1808976
Ссылка на результат
?n1=150&n2=95&n3=86
Найти высоту треугольника со сторонами 122, 93 и 79
Найти высоту треугольника со сторонами 144, 128 и 113
Найти высоту треугольника со сторонами 137, 108 и 40
Найти высоту треугольника со сторонами 148, 130 и 41
Найти высоту треугольника со сторонами 147, 129 и 93
Найти высоту треугольника со сторонами 118, 105 и 100
Найти высоту треугольника со сторонами 144, 128 и 113
Найти высоту треугольника со сторонами 137, 108 и 40
Найти высоту треугольника со сторонами 148, 130 и 41
Найти высоту треугольника со сторонами 147, 129 и 93
Найти высоту треугольника со сторонами 118, 105 и 100