Рассчитать высоту треугольника со сторонами 150, 95 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 95 + 92}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-95)(168.5-92)}}{95}\normalsize = 88.1386906}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-95)(168.5-92)}}{150}\normalsize = 55.8211707}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-95)(168.5-92)}}{92}\normalsize = 91.0127783}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 95 и 92 равна 88.1386906
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 95 и 92 равна 55.8211707
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 95 и 92 равна 91.0127783
Ссылка на результат
?n1=150&n2=95&n3=92
Найти высоту треугольника со сторонами 76, 67 и 43
Найти высоту треугольника со сторонами 62, 35 и 32
Найти высоту треугольника со сторонами 139, 138 и 10
Найти высоту треугольника со сторонами 35, 28 и 8
Найти высоту треугольника со сторонами 148, 140 и 39
Найти высоту треугольника со сторонами 43, 30 и 21
Найти высоту треугольника со сторонами 62, 35 и 32
Найти высоту треугольника со сторонами 139, 138 и 10
Найти высоту треугольника со сторонами 35, 28 и 8
Найти высоту треугольника со сторонами 148, 140 и 39
Найти высоту треугольника со сторонами 43, 30 и 21