Рассчитать высоту треугольника со сторонами 16, 14 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{16 + 14 + 10}{2}} \normalsize = 20}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{20(20-16)(20-14)(20-10)}}{14}\normalsize = 9.89743319}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{20(20-16)(20-14)(20-10)}}{16}\normalsize = 8.66025404}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{20(20-16)(20-14)(20-10)}}{10}\normalsize = 13.8564065}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 16, 14 и 10 равна 9.89743319
Высота треугольника опущенная с вершины A на сторону BC со сторонами 16, 14 и 10 равна 8.66025404
Высота треугольника опущенная с вершины C на сторону AB со сторонами 16, 14 и 10 равна 13.8564065
Ссылка на результат
?n1=16&n2=14&n3=10
Найти высоту треугольника со сторонами 74, 47 и 42
Найти высоту треугольника со сторонами 134, 121 и 89
Найти высоту треугольника со сторонами 96, 96 и 22
Найти высоту треугольника со сторонами 92, 69 и 63
Найти высоту треугольника со сторонами 66, 64 и 7
Найти высоту треугольника со сторонами 46, 37 и 11
Найти высоту треугольника со сторонами 134, 121 и 89
Найти высоту треугольника со сторонами 96, 96 и 22
Найти высоту треугольника со сторонами 92, 69 и 63
Найти высоту треугольника со сторонами 66, 64 и 7
Найти высоту треугольника со сторонами 46, 37 и 11