Рассчитать высоту треугольника со сторонами 17, 12 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{17 + 12 + 10}{2}} \normalsize = 19.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{19.5(19.5-17)(19.5-12)(19.5-10)}}{12}\normalsize = 9.82264603}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{19.5(19.5-17)(19.5-12)(19.5-10)}}{17}\normalsize = 6.93363249}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{19.5(19.5-17)(19.5-12)(19.5-10)}}{10}\normalsize = 11.7871752}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 17, 12 и 10 равна 9.82264603
Высота треугольника опущенная с вершины A на сторону BC со сторонами 17, 12 и 10 равна 6.93363249
Высота треугольника опущенная с вершины C на сторону AB со сторонами 17, 12 и 10 равна 11.7871752
Ссылка на результат
?n1=17&n2=12&n3=10
Найти высоту треугольника со сторонами 150, 129 и 70
Найти высоту треугольника со сторонами 120, 91 и 37
Найти высоту треугольника со сторонами 126, 116 и 95
Найти высоту треугольника со сторонами 94, 86 и 64
Найти высоту треугольника со сторонами 120, 94 и 35
Найти высоту треугольника со сторонами 142, 116 и 34
Найти высоту треугольника со сторонами 120, 91 и 37
Найти высоту треугольника со сторонами 126, 116 и 95
Найти высоту треугольника со сторонами 94, 86 и 64
Найти высоту треугольника со сторонами 120, 94 и 35
Найти высоту треугольника со сторонами 142, 116 и 34