Рассчитать высоту треугольника со сторонами 17, 13 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{17 + 13 + 7}{2}} \normalsize = 18.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{18.5(18.5-17)(18.5-13)(18.5-7)}}{13}\normalsize = 6.44537814}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{18.5(18.5-17)(18.5-13)(18.5-7)}}{17}\normalsize = 4.92881858}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{18.5(18.5-17)(18.5-13)(18.5-7)}}{7}\normalsize = 11.969988}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 17, 13 и 7 равна 6.44537814
Высота треугольника опущенная с вершины A на сторону BC со сторонами 17, 13 и 7 равна 4.92881858
Высота треугольника опущенная с вершины C на сторону AB со сторонами 17, 13 и 7 равна 11.969988
Ссылка на результат
?n1=17&n2=13&n3=7
Найти высоту треугольника со сторонами 131, 96 и 92
Найти высоту треугольника со сторонами 72, 71 и 69
Найти высоту треугольника со сторонами 106, 81 и 67
Найти высоту треугольника со сторонами 114, 74 и 44
Найти высоту треугольника со сторонами 137, 123 и 17
Найти высоту треугольника со сторонами 121, 102 и 40
Найти высоту треугольника со сторонами 72, 71 и 69
Найти высоту треугольника со сторонами 106, 81 и 67
Найти высоту треугольника со сторонами 114, 74 и 44
Найти высоту треугольника со сторонами 137, 123 и 17
Найти высоту треугольника со сторонами 121, 102 и 40