Рассчитать высоту треугольника со сторонами 17, 16 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{17 + 16 + 12}{2}} \normalsize = 22.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{22.5(22.5-17)(22.5-16)(22.5-12)}}{16}\normalsize = 11.4877227}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{22.5(22.5-17)(22.5-16)(22.5-12)}}{17}\normalsize = 10.8119743}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{22.5(22.5-17)(22.5-16)(22.5-12)}}{12}\normalsize = 15.3169636}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 17, 16 и 12 равна 11.4877227
Высота треугольника опущенная с вершины A на сторону BC со сторонами 17, 16 и 12 равна 10.8119743
Высота треугольника опущенная с вершины C на сторону AB со сторонами 17, 16 и 12 равна 15.3169636
Ссылка на результат
?n1=17&n2=16&n3=12
Найти высоту треугольника со сторонами 105, 98 и 66
Найти высоту треугольника со сторонами 89, 83 и 38
Найти высоту треугольника со сторонами 149, 149 и 137
Найти высоту треугольника со сторонами 47, 26 и 23
Найти высоту треугольника со сторонами 147, 145 и 49
Найти высоту треугольника со сторонами 146, 129 и 117
Найти высоту треугольника со сторонами 89, 83 и 38
Найти высоту треугольника со сторонами 149, 149 и 137
Найти высоту треугольника со сторонами 47, 26 и 23
Найти высоту треугольника со сторонами 147, 145 и 49
Найти высоту треугольника со сторонами 146, 129 и 117