Рассчитать высоту треугольника со сторонами 18, 16 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{18 + 16 + 6}{2}} \normalsize = 20}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{20(20-18)(20-16)(20-6)}}{16}\normalsize = 5.91607978}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{20(20-18)(20-16)(20-6)}}{18}\normalsize = 5.25873758}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{20(20-18)(20-16)(20-6)}}{6}\normalsize = 15.7762128}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 18, 16 и 6 равна 5.91607978
Высота треугольника опущенная с вершины A на сторону BC со сторонами 18, 16 и 6 равна 5.25873758
Высота треугольника опущенная с вершины C на сторону AB со сторонами 18, 16 и 6 равна 15.7762128
Ссылка на результат
?n1=18&n2=16&n3=6