Рассчитать высоту треугольника со сторонами 20, 14 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{20 + 14 + 14}{2}} \normalsize = 24}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{24(24-20)(24-14)(24-14)}}{14}\normalsize = 13.9970842}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{24(24-20)(24-14)(24-14)}}{20}\normalsize = 9.79795897}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{24(24-20)(24-14)(24-14)}}{14}\normalsize = 13.9970842}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 20, 14 и 14 равна 13.9970842
Высота треугольника опущенная с вершины A на сторону BC со сторонами 20, 14 и 14 равна 9.79795897
Высота треугольника опущенная с вершины C на сторону AB со сторонами 20, 14 и 14 равна 13.9970842
Ссылка на результат
?n1=20&n2=14&n3=14
Найти высоту треугольника со сторонами 88, 87 и 28
Найти высоту треугольника со сторонами 102, 66 и 52
Найти высоту треугольника со сторонами 125, 80 и 48
Найти высоту треугольника со сторонами 50, 49 и 38
Найти высоту треугольника со сторонами 138, 109 и 36
Найти высоту треугольника со сторонами 102, 80 и 44
Найти высоту треугольника со сторонами 102, 66 и 52
Найти высоту треугольника со сторонами 125, 80 и 48
Найти высоту треугольника со сторонами 50, 49 и 38
Найти высоту треугольника со сторонами 138, 109 и 36
Найти высоту треугольника со сторонами 102, 80 и 44