Рассчитать высоту треугольника со сторонами 20, 18 и 11

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{20 + 18 + 11}{2}} \normalsize = 24.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{24.5(24.5-20)(24.5-18)(24.5-11)}}{18}\normalsize = 10.9287465}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{24.5(24.5-20)(24.5-18)(24.5-11)}}{20}\normalsize = 9.83587185}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{24.5(24.5-20)(24.5-18)(24.5-11)}}{11}\normalsize = 17.8834034}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 20, 18 и 11 равна 10.9287465
Высота треугольника опущенная с вершины A на сторону BC со сторонами 20, 18 и 11 равна 9.83587185
Высота треугольника опущенная с вершины C на сторону AB со сторонами 20, 18 и 11 равна 17.8834034
Ссылка на результат
?n1=20&n2=18&n3=11