Рассчитать высоту треугольника со сторонами 21, 21 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{21 + 21 + 11}{2}} \normalsize = 26.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{26.5(26.5-21)(26.5-21)(26.5-11)}}{21}\normalsize = 10.616031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{26.5(26.5-21)(26.5-21)(26.5-11)}}{21}\normalsize = 10.616031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{26.5(26.5-21)(26.5-21)(26.5-11)}}{11}\normalsize = 20.2669682}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 21, 21 и 11 равна 10.616031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 21, 21 и 11 равна 10.616031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 21, 21 и 11 равна 20.2669682
Ссылка на результат
?n1=21&n2=21&n3=11
Найти высоту треугольника со сторонами 60, 56 и 22
Найти высоту треугольника со сторонами 128, 102 и 73
Найти высоту треугольника со сторонами 135, 85 и 79
Найти высоту треугольника со сторонами 111, 78 и 60
Найти высоту треугольника со сторонами 75, 57 и 38
Найти высоту треугольника со сторонами 35, 33 и 12
Найти высоту треугольника со сторонами 128, 102 и 73
Найти высоту треугольника со сторонами 135, 85 и 79
Найти высоту треугольника со сторонами 111, 78 и 60
Найти высоту треугольника со сторонами 75, 57 и 38
Найти высоту треугольника со сторонами 35, 33 и 12