Рассчитать высоту треугольника со сторонами 24, 23 и 17

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{24 + 23 + 17}{2}} \normalsize = 32}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{32(32-24)(32-23)(32-17)}}{23}\normalsize = 16.1654957}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{32(32-24)(32-23)(32-17)}}{24}\normalsize = 15.4919334}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{32(32-24)(32-23)(32-17)}}{17}\normalsize = 21.8709648}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 24, 23 и 17 равна 16.1654957
Высота треугольника опущенная с вершины A на сторону BC со сторонами 24, 23 и 17 равна 15.4919334
Высота треугольника опущенная с вершины C на сторону AB со сторонами 24, 23 и 17 равна 21.8709648
Ссылка на результат
?n1=24&n2=23&n3=17