Рассчитать высоту треугольника со сторонами 25, 22 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{25 + 22 + 6}{2}} \normalsize = 26.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{26.5(26.5-25)(26.5-22)(26.5-6)}}{22}\normalsize = 5.50502212}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{26.5(26.5-25)(26.5-22)(26.5-6)}}{25}\normalsize = 4.84441947}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{26.5(26.5-25)(26.5-22)(26.5-6)}}{6}\normalsize = 20.1850811}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 25, 22 и 6 равна 5.50502212
Высота треугольника опущенная с вершины A на сторону BC со сторонами 25, 22 и 6 равна 4.84441947
Высота треугольника опущенная с вершины C на сторону AB со сторонами 25, 22 и 6 равна 20.1850811
Ссылка на результат
?n1=25&n2=22&n3=6