Рассчитать высоту треугольника со сторонами 26, 18 и 17

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 18 + 17}{2}} \normalsize = 30.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{30.5(30.5-26)(30.5-18)(30.5-17)}}{18}\normalsize = 16.9096866}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{30.5(30.5-26)(30.5-18)(30.5-17)}}{26}\normalsize = 11.7067061}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{30.5(30.5-26)(30.5-18)(30.5-17)}}{17}\normalsize = 17.904374}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 18 и 17 равна 16.9096866
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 18 и 17 равна 11.7067061
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 18 и 17 равна 17.904374
Ссылка на результат
?n1=26&n2=18&n3=17