Рассчитать высоту треугольника со сторонами 26, 20 и 9

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 20 + 9}{2}} \normalsize = 27.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{27.5(27.5-26)(27.5-20)(27.5-9)}}{20}\normalsize = 7.56534038}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{27.5(27.5-26)(27.5-20)(27.5-9)}}{26}\normalsize = 5.8194926}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{27.5(27.5-26)(27.5-20)(27.5-9)}}{9}\normalsize = 16.8118675}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 20 и 9 равна 7.56534038
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 20 и 9 равна 5.8194926
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 20 и 9 равна 16.8118675
Ссылка на результат
?n1=26&n2=20&n3=9