Рассчитать высоту треугольника со сторонами 26, 24 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 24 + 18}{2}} \normalsize = 34}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{34(34-26)(34-24)(34-18)}}{24}\normalsize = 17.3845397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{34(34-26)(34-24)(34-18)}}{26}\normalsize = 16.0472675}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{34(34-26)(34-24)(34-18)}}{18}\normalsize = 23.1793863}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 24 и 18 равна 17.3845397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 24 и 18 равна 16.0472675
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 24 и 18 равна 23.1793863
Ссылка на результат
?n1=26&n2=24&n3=18
Найти высоту треугольника со сторонами 147, 106 и 53
Найти высоту треугольника со сторонами 119, 95 и 55
Найти высоту треугольника со сторонами 150, 143 и 12
Найти высоту треугольника со сторонами 125, 102 и 82
Найти высоту треугольника со сторонами 149, 129 и 35
Найти высоту треугольника со сторонами 106, 92 и 15
Найти высоту треугольника со сторонами 119, 95 и 55
Найти высоту треугольника со сторонами 150, 143 и 12
Найти высоту треугольника со сторонами 125, 102 и 82
Найти высоту треугольника со сторонами 149, 129 и 35
Найти высоту треугольника со сторонами 106, 92 и 15