Рассчитать высоту треугольника со сторонами 27, 16 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{27 + 16 + 12}{2}} \normalsize = 27.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{27.5(27.5-27)(27.5-16)(27.5-12)}}{16}\normalsize = 6.18836799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{27.5(27.5-27)(27.5-16)(27.5-12)}}{27}\normalsize = 3.66718103}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{27.5(27.5-27)(27.5-16)(27.5-12)}}{12}\normalsize = 8.25115733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 27, 16 и 12 равна 6.18836799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 27, 16 и 12 равна 3.66718103
Высота треугольника опущенная с вершины C на сторону AB со сторонами 27, 16 и 12 равна 8.25115733
Ссылка на результат
?n1=27&n2=16&n3=12
Найти высоту треугольника со сторонами 148, 79 и 75
Найти высоту треугольника со сторонами 127, 117 и 65
Найти высоту треугольника со сторонами 122, 108 и 36
Найти высоту треугольника со сторонами 103, 62 и 45
Найти высоту треугольника со сторонами 78, 73 и 52
Найти высоту треугольника со сторонами 148, 126 и 110
Найти высоту треугольника со сторонами 127, 117 и 65
Найти высоту треугольника со сторонами 122, 108 и 36
Найти высоту треугольника со сторонами 103, 62 и 45
Найти высоту треугольника со сторонами 78, 73 и 52
Найти высоту треугольника со сторонами 148, 126 и 110