Рассчитать высоту треугольника со сторонами 28, 18 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{28 + 18 + 14}{2}} \normalsize = 30}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{30(30-28)(30-18)(30-14)}}{18}\normalsize = 11.9256959}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{30(30-28)(30-18)(30-14)}}{28}\normalsize = 7.66651878}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{30(30-28)(30-18)(30-14)}}{14}\normalsize = 15.3330376}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 28, 18 и 14 равна 11.9256959
Высота треугольника опущенная с вершины A на сторону BC со сторонами 28, 18 и 14 равна 7.66651878
Высота треугольника опущенная с вершины C на сторону AB со сторонами 28, 18 и 14 равна 15.3330376
Ссылка на результат
?n1=28&n2=18&n3=14
Найти высоту треугольника со сторонами 80, 77 и 58
Найти высоту треугольника со сторонами 142, 134 и 96
Найти высоту треугольника со сторонами 129, 95 и 73
Найти высоту треугольника со сторонами 150, 87 и 67
Найти высоту треугольника со сторонами 120, 78 и 46
Найти высоту треугольника со сторонами 44, 26 и 19
Найти высоту треугольника со сторонами 142, 134 и 96
Найти высоту треугольника со сторонами 129, 95 и 73
Найти высоту треугольника со сторонами 150, 87 и 67
Найти высоту треугольника со сторонами 120, 78 и 46
Найти высоту треугольника со сторонами 44, 26 и 19