Рассчитать высоту треугольника со сторонами 28, 20 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{28 + 20 + 13}{2}} \normalsize = 30.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{30.5(30.5-28)(30.5-20)(30.5-13)}}{20}\normalsize = 11.8367806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{30.5(30.5-28)(30.5-20)(30.5-13)}}{28}\normalsize = 8.45484329}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{30.5(30.5-28)(30.5-20)(30.5-13)}}{13}\normalsize = 18.2104317}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 28, 20 и 13 равна 11.8367806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 28, 20 и 13 равна 8.45484329
Высота треугольника опущенная с вершины C на сторону AB со сторонами 28, 20 и 13 равна 18.2104317
Ссылка на результат
?n1=28&n2=20&n3=13
Найти высоту треугольника со сторонами 143, 104 и 75
Найти высоту треугольника со сторонами 112, 109 и 60
Найти высоту треугольника со сторонами 132, 102 и 93
Найти высоту треугольника со сторонами 105, 92 и 37
Найти высоту треугольника со сторонами 118, 79 и 53
Найти высоту треугольника со сторонами 94, 63 и 56
Найти высоту треугольника со сторонами 112, 109 и 60
Найти высоту треугольника со сторонами 132, 102 и 93
Найти высоту треугольника со сторонами 105, 92 и 37
Найти высоту треугольника со сторонами 118, 79 и 53
Найти высоту треугольника со сторонами 94, 63 и 56