Рассчитать высоту треугольника со сторонами 28, 20 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{28 + 20 + 15}{2}} \normalsize = 31.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{31.5(31.5-28)(31.5-20)(31.5-15)}}{20}\normalsize = 14.4637262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{31.5(31.5-28)(31.5-20)(31.5-15)}}{28}\normalsize = 10.331233}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{31.5(31.5-28)(31.5-20)(31.5-15)}}{15}\normalsize = 19.2849682}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 28, 20 и 15 равна 14.4637262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 28, 20 и 15 равна 10.331233
Высота треугольника опущенная с вершины C на сторону AB со сторонами 28, 20 и 15 равна 19.2849682
Ссылка на результат
?n1=28&n2=20&n3=15
Найти высоту треугольника со сторонами 121, 97 и 59
Найти высоту треугольника со сторонами 107, 101 и 30
Найти высоту треугольника со сторонами 70, 61 и 35
Найти высоту треугольника со сторонами 136, 95 и 53
Найти высоту треугольника со сторонами 99, 64 и 61
Найти высоту треугольника со сторонами 130, 119 и 45
Найти высоту треугольника со сторонами 107, 101 и 30
Найти высоту треугольника со сторонами 70, 61 и 35
Найти высоту треугольника со сторонами 136, 95 и 53
Найти высоту треугольника со сторонами 99, 64 и 61
Найти высоту треугольника со сторонами 130, 119 и 45