Рассчитать высоту треугольника со сторонами 28, 24 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{28 + 24 + 6}{2}} \normalsize = 29}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{29(29-28)(29-24)(29-6)}}{24}\normalsize = 4.81245491}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{29(29-28)(29-24)(29-6)}}{28}\normalsize = 4.12496135}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{29(29-28)(29-24)(29-6)}}{6}\normalsize = 19.2498196}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 28, 24 и 6 равна 4.81245491
Высота треугольника опущенная с вершины A на сторону BC со сторонами 28, 24 и 6 равна 4.12496135
Высота треугольника опущенная с вершины C на сторону AB со сторонами 28, 24 и 6 равна 19.2498196
Ссылка на результат
?n1=28&n2=24&n3=6
Найти высоту треугольника со сторонами 135, 97 и 87
Найти высоту треугольника со сторонами 90, 54 и 46
Найти высоту треугольника со сторонами 143, 136 и 56
Найти высоту треугольника со сторонами 140, 140 и 104
Найти высоту треугольника со сторонами 123, 77 и 53
Найти высоту треугольника со сторонами 108, 87 и 49
Найти высоту треугольника со сторонами 90, 54 и 46
Найти высоту треугольника со сторонами 143, 136 и 56
Найти высоту треугольника со сторонами 140, 140 и 104
Найти высоту треугольника со сторонами 123, 77 и 53
Найти высоту треугольника со сторонами 108, 87 и 49