Рассчитать высоту треугольника со сторонами 28, 27 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{28 + 27 + 17}{2}} \normalsize = 36}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{36(36-28)(36-27)(36-17)}}{27}\normalsize = 16.4384373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{36(36-28)(36-27)(36-17)}}{28}\normalsize = 15.8513503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{36(36-28)(36-27)(36-17)}}{17}\normalsize = 26.1081064}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 28, 27 и 17 равна 16.4384373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 28, 27 и 17 равна 15.8513503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 28, 27 и 17 равна 26.1081064
Ссылка на результат
?n1=28&n2=27&n3=17
Найти высоту треугольника со сторонами 92, 83 и 17
Найти высоту треугольника со сторонами 136, 91 и 83
Найти высоту треугольника со сторонами 91, 81 и 44
Найти высоту треугольника со сторонами 76, 53 и 39
Найти высоту треугольника со сторонами 74, 74 и 33
Найти высоту треугольника со сторонами 99, 88 и 73
Найти высоту треугольника со сторонами 136, 91 и 83
Найти высоту треугольника со сторонами 91, 81 и 44
Найти высоту треугольника со сторонами 76, 53 и 39
Найти высоту треугольника со сторонами 74, 74 и 33
Найти высоту треугольника со сторонами 99, 88 и 73