Рассчитать высоту треугольника со сторонами 29, 22 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{29 + 22 + 13}{2}} \normalsize = 32}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{32(32-29)(32-22)(32-13)}}{22}\normalsize = 12.2777767}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{32(32-29)(32-22)(32-13)}}{29}\normalsize = 9.31417546}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{32(32-29)(32-22)(32-13)}}{13}\normalsize = 20.777776}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 29, 22 и 13 равна 12.2777767
Высота треугольника опущенная с вершины A на сторону BC со сторонами 29, 22 и 13 равна 9.31417546
Высота треугольника опущенная с вершины C на сторону AB со сторонами 29, 22 и 13 равна 20.777776
Ссылка на результат
?n1=29&n2=22&n3=13
Найти высоту треугольника со сторонами 144, 119 и 76
Найти высоту треугольника со сторонами 125, 122 и 89
Найти высоту треугольника со сторонами 144, 126 и 77
Найти высоту треугольника со сторонами 146, 139 и 109
Найти высоту треугольника со сторонами 124, 81 и 51
Найти высоту треугольника со сторонами 70, 60 и 12
Найти высоту треугольника со сторонами 125, 122 и 89
Найти высоту треугольника со сторонами 144, 126 и 77
Найти высоту треугольника со сторонами 146, 139 и 109
Найти высоту треугольника со сторонами 124, 81 и 51
Найти высоту треугольника со сторонами 70, 60 и 12