Рассчитать высоту треугольника со сторонами 29, 27 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{29 + 27 + 8}{2}} \normalsize = 32}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{32(32-29)(32-27)(32-8)}}{27}\normalsize = 7.95046392}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{32(32-29)(32-27)(32-8)}}{29}\normalsize = 7.40215606}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{32(32-29)(32-27)(32-8)}}{8}\normalsize = 26.8328157}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 29, 27 и 8 равна 7.95046392
Высота треугольника опущенная с вершины A на сторону BC со сторонами 29, 27 и 8 равна 7.40215606
Высота треугольника опущенная с вершины C на сторону AB со сторонами 29, 27 и 8 равна 26.8328157
Ссылка на результат
?n1=29&n2=27&n3=8
Найти высоту треугольника со сторонами 115, 81 и 80
Найти высоту треугольника со сторонами 111, 74 и 64
Найти высоту треугольника со сторонами 148, 137 и 30
Найти высоту треугольника со сторонами 111, 103 и 80
Найти высоту треугольника со сторонами 89, 84 и 17
Найти высоту треугольника со сторонами 110, 107 и 23
Найти высоту треугольника со сторонами 111, 74 и 64
Найти высоту треугольника со сторонами 148, 137 и 30
Найти высоту треугольника со сторонами 111, 103 и 80
Найти высоту треугольника со сторонами 89, 84 и 17
Найти высоту треугольника со сторонами 110, 107 и 23