Рассчитать высоту треугольника со сторонами 30, 29 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{30 + 29 + 17}{2}} \normalsize = 38}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{38(38-30)(38-29)(38-17)}}{29}\normalsize = 16.5310215}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{38(38-30)(38-29)(38-17)}}{30}\normalsize = 15.9799875}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{38(38-30)(38-29)(38-17)}}{17}\normalsize = 28.1999779}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 30, 29 и 17 равна 16.5310215
Высота треугольника опущенная с вершины A на сторону BC со сторонами 30, 29 и 17 равна 15.9799875
Высота треугольника опущенная с вершины C на сторону AB со сторонами 30, 29 и 17 равна 28.1999779
Ссылка на результат
?n1=30&n2=29&n3=17
Найти высоту треугольника со сторонами 136, 83 и 63
Найти высоту треугольника со сторонами 135, 124 и 18
Найти высоту треугольника со сторонами 109, 81 и 49
Найти высоту треугольника со сторонами 109, 88 и 32
Найти высоту треугольника со сторонами 135, 99 и 50
Найти высоту треугольника со сторонами 107, 100 и 85
Найти высоту треугольника со сторонами 135, 124 и 18
Найти высоту треугольника со сторонами 109, 81 и 49
Найти высоту треугольника со сторонами 109, 88 и 32
Найти высоту треугольника со сторонами 135, 99 и 50
Найти высоту треугольника со сторонами 107, 100 и 85