Рассчитать высоту треугольника со сторонами 31, 24 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{31 + 24 + 13}{2}} \normalsize = 34}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{34(34-31)(34-24)(34-13)}}{24}\normalsize = 12.1963109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{34(34-31)(34-24)(34-13)}}{31}\normalsize = 9.44230523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{34(34-31)(34-24)(34-13)}}{13}\normalsize = 22.5162663}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 31, 24 и 13 равна 12.1963109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 31, 24 и 13 равна 9.44230523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 31, 24 и 13 равна 22.5162663
Ссылка на результат
?n1=31&n2=24&n3=13
Найти высоту треугольника со сторонами 116, 106 и 26
Найти высоту треугольника со сторонами 129, 101 и 41
Найти высоту треугольника со сторонами 84, 80 и 35
Найти высоту треугольника со сторонами 143, 135 и 85
Найти высоту треугольника со сторонами 145, 87 и 73
Найти высоту треугольника со сторонами 87, 83 и 9
Найти высоту треугольника со сторонами 129, 101 и 41
Найти высоту треугольника со сторонами 84, 80 и 35
Найти высоту треугольника со сторонами 143, 135 и 85
Найти высоту треугольника со сторонами 145, 87 и 73
Найти высоту треугольника со сторонами 87, 83 и 9