Рассчитать высоту треугольника со сторонами 31, 27 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{31 + 27 + 7}{2}} \normalsize = 32.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{32.5(32.5-31)(32.5-27)(32.5-7)}}{27}\normalsize = 6.12498425}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{32.5(32.5-31)(32.5-27)(32.5-7)}}{31}\normalsize = 5.3346637}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{32.5(32.5-31)(32.5-27)(32.5-7)}}{7}\normalsize = 23.6249393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 31, 27 и 7 равна 6.12498425
Высота треугольника опущенная с вершины A на сторону BC со сторонами 31, 27 и 7 равна 5.3346637
Высота треугольника опущенная с вершины C на сторону AB со сторонами 31, 27 и 7 равна 23.6249393
Ссылка на результат
?n1=31&n2=27&n3=7
Найти высоту треугольника со сторонами 69, 66 и 62
Найти высоту треугольника со сторонами 146, 137 и 129
Найти высоту треугольника со сторонами 65, 54 и 27
Найти высоту треугольника со сторонами 102, 85 и 58
Найти высоту треугольника со сторонами 65, 38 и 29
Найти высоту треугольника со сторонами 82, 81 и 50
Найти высоту треугольника со сторонами 146, 137 и 129
Найти высоту треугольника со сторонами 65, 54 и 27
Найти высоту треугольника со сторонами 102, 85 и 58
Найти высоту треугольника со сторонами 65, 38 и 29
Найти высоту треугольника со сторонами 82, 81 и 50