Рассчитать высоту треугольника со сторонами 32, 29 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{32 + 29 + 23}{2}} \normalsize = 42}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{42(42-32)(42-29)(42-23)}}{29}\normalsize = 22.2128927}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{42(42-32)(42-29)(42-23)}}{32}\normalsize = 20.130434}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{42(42-32)(42-29)(42-23)}}{23}\normalsize = 28.0075604}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 32, 29 и 23 равна 22.2128927
Высота треугольника опущенная с вершины A на сторону BC со сторонами 32, 29 и 23 равна 20.130434
Высота треугольника опущенная с вершины C на сторону AB со сторонами 32, 29 и 23 равна 28.0075604
Ссылка на результат
?n1=32&n2=29&n3=23
Найти высоту треугольника со сторонами 90, 78 и 30
Найти высоту треугольника со сторонами 34, 31 и 19
Найти высоту треугольника со сторонами 97, 96 и 87
Найти высоту треугольника со сторонами 143, 91 и 77
Найти высоту треугольника со сторонами 132, 128 и 7
Найти высоту треугольника со сторонами 122, 89 и 72
Найти высоту треугольника со сторонами 34, 31 и 19
Найти высоту треугольника со сторонами 97, 96 и 87
Найти высоту треугольника со сторонами 143, 91 и 77
Найти высоту треугольника со сторонами 132, 128 и 7
Найти высоту треугольника со сторонами 122, 89 и 72