Рассчитать высоту треугольника со сторонами 32, 31 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{32 + 31 + 19}{2}} \normalsize = 41}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{41(41-32)(41-31)(41-19)}}{31}\normalsize = 18.3820027}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{41(41-32)(41-31)(41-19)}}{32}\normalsize = 17.8075651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{41(41-32)(41-31)(41-19)}}{19}\normalsize = 29.9916886}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 32, 31 и 19 равна 18.3820027
Высота треугольника опущенная с вершины A на сторону BC со сторонами 32, 31 и 19 равна 17.8075651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 32, 31 и 19 равна 29.9916886
Ссылка на результат
?n1=32&n2=31&n3=19
Найти высоту треугольника со сторонами 148, 132 и 47
Найти высоту треугольника со сторонами 133, 125 и 75
Найти высоту треугольника со сторонами 129, 84 и 73
Найти высоту треугольника со сторонами 110, 109 и 72
Найти высоту треугольника со сторонами 111, 86 и 51
Найти высоту треугольника со сторонами 136, 112 и 87
Найти высоту треугольника со сторонами 133, 125 и 75
Найти высоту треугольника со сторонами 129, 84 и 73
Найти высоту треугольника со сторонами 110, 109 и 72
Найти высоту треугольника со сторонами 111, 86 и 51
Найти высоту треугольника со сторонами 136, 112 и 87