Рассчитать высоту треугольника со сторонами 32, 32 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{32 + 32 + 10}{2}} \normalsize = 37}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{37(37-32)(37-32)(37-10)}}{32}\normalsize = 9.87717539}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{37(37-32)(37-32)(37-10)}}{32}\normalsize = 9.87717539}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{37(37-32)(37-32)(37-10)}}{10}\normalsize = 31.6069613}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 32, 32 и 10 равна 9.87717539
Высота треугольника опущенная с вершины A на сторону BC со сторонами 32, 32 и 10 равна 9.87717539
Высота треугольника опущенная с вершины C на сторону AB со сторонами 32, 32 и 10 равна 31.6069613
Ссылка на результат
?n1=32&n2=32&n3=10
Найти высоту треугольника со сторонами 48, 31 и 22
Найти высоту треугольника со сторонами 119, 116 и 37
Найти высоту треугольника со сторонами 145, 118 и 44
Найти высоту треугольника со сторонами 119, 114 и 11
Найти высоту треугольника со сторонами 62, 56 и 46
Найти высоту треугольника со сторонами 126, 108 и 52
Найти высоту треугольника со сторонами 119, 116 и 37
Найти высоту треугольника со сторонами 145, 118 и 44
Найти высоту треугольника со сторонами 119, 114 и 11
Найти высоту треугольника со сторонами 62, 56 и 46
Найти высоту треугольника со сторонами 126, 108 и 52