Рассчитать высоту треугольника со сторонами 33, 32 и 28

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{33 + 32 + 28}{2}} \normalsize = 46.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46.5(46.5-33)(46.5-32)(46.5-28)}}{32}\normalsize = 25.647394}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46.5(46.5-33)(46.5-32)(46.5-28)}}{33}\normalsize = 24.8702002}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46.5(46.5-33)(46.5-32)(46.5-28)}}{28}\normalsize = 29.3113074}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 33, 32 и 28 равна 25.647394
Высота треугольника опущенная с вершины A на сторону BC со сторонами 33, 32 и 28 равна 24.8702002
Высота треугольника опущенная с вершины C на сторону AB со сторонами 33, 32 и 28 равна 29.3113074
Ссылка на результат
?n1=33&n2=32&n3=28