Рассчитать высоту треугольника со сторонами 34, 25 и 14

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{34 + 25 + 14}{2}} \normalsize = 36.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{36.5(36.5-34)(36.5-25)(36.5-14)}}{25}\normalsize = 12.2926807}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{36.5(36.5-34)(36.5-25)(36.5-14)}}{34}\normalsize = 9.03873584}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{36.5(36.5-34)(36.5-25)(36.5-14)}}{14}\normalsize = 21.9512156}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 34, 25 и 14 равна 12.2926807
Высота треугольника опущенная с вершины A на сторону BC со сторонами 34, 25 и 14 равна 9.03873584
Высота треугольника опущенная с вершины C на сторону AB со сторонами 34, 25 и 14 равна 21.9512156
Ссылка на результат
?n1=34&n2=25&n3=14