Рассчитать высоту треугольника со сторонами 34, 28 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{34 + 28 + 12}{2}} \normalsize = 37}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{37(37-34)(37-28)(37-12)}}{28}\normalsize = 11.2882004}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{37(37-34)(37-28)(37-12)}}{34}\normalsize = 9.29616508}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{37(37-34)(37-28)(37-12)}}{12}\normalsize = 26.3391344}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 34, 28 и 12 равна 11.2882004
Высота треугольника опущенная с вершины A на сторону BC со сторонами 34, 28 и 12 равна 9.29616508
Высота треугольника опущенная с вершины C на сторону AB со сторонами 34, 28 и 12 равна 26.3391344
Ссылка на результат
?n1=34&n2=28&n3=12
Найти высоту треугольника со сторонами 146, 110 и 50
Найти высоту треугольника со сторонами 110, 105 и 96
Найти высоту треугольника со сторонами 139, 105 и 44
Найти высоту треугольника со сторонами 86, 82 и 74
Найти высоту треугольника со сторонами 135, 116 и 103
Найти высоту треугольника со сторонами 118, 98 и 39
Найти высоту треугольника со сторонами 110, 105 и 96
Найти высоту треугольника со сторонами 139, 105 и 44
Найти высоту треугольника со сторонами 86, 82 и 74
Найти высоту треугольника со сторонами 135, 116 и 103
Найти высоту треугольника со сторонами 118, 98 и 39