Рассчитать высоту треугольника со сторонами 34, 28 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{34 + 28 + 24}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-34)(43-28)(43-24)}}{28}\normalsize = 23.7219222}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-34)(43-28)(43-24)}}{34}\normalsize = 19.5357006}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-34)(43-28)(43-24)}}{24}\normalsize = 27.6755759}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 34, 28 и 24 равна 23.7219222
Высота треугольника опущенная с вершины A на сторону BC со сторонами 34, 28 и 24 равна 19.5357006
Высота треугольника опущенная с вершины C на сторону AB со сторонами 34, 28 и 24 равна 27.6755759
Ссылка на результат
?n1=34&n2=28&n3=24
Найти высоту треугольника со сторонами 150, 136 и 58
Найти высоту треугольника со сторонами 75, 75 и 49
Найти высоту треугольника со сторонами 124, 88 и 45
Найти высоту треугольника со сторонами 117, 77 и 76
Найти высоту треугольника со сторонами 97, 97 и 67
Найти высоту треугольника со сторонами 135, 107 и 41
Найти высоту треугольника со сторонами 75, 75 и 49
Найти высоту треугольника со сторонами 124, 88 и 45
Найти высоту треугольника со сторонами 117, 77 и 76
Найти высоту треугольника со сторонами 97, 97 и 67
Найти высоту треугольника со сторонами 135, 107 и 41