Рассчитать высоту треугольника со сторонами 34, 31 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{34 + 31 + 7}{2}} \normalsize = 36}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{36(36-34)(36-31)(36-7)}}{31}\normalsize = 6.59202053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{36(36-34)(36-31)(36-7)}}{34}\normalsize = 6.01037166}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{36(36-34)(36-31)(36-7)}}{7}\normalsize = 29.1932338}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 34, 31 и 7 равна 6.59202053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 34, 31 и 7 равна 6.01037166
Высота треугольника опущенная с вершины C на сторону AB со сторонами 34, 31 и 7 равна 29.1932338
Ссылка на результат
?n1=34&n2=31&n3=7
Найти высоту треугольника со сторонами 25, 23 и 12
Найти высоту треугольника со сторонами 90, 53 и 53
Найти высоту треугольника со сторонами 110, 96 и 44
Найти высоту треугольника со сторонами 63, 49 и 26
Найти высоту треугольника со сторонами 123, 121 и 38
Найти высоту треугольника со сторонами 109, 94 и 37
Найти высоту треугольника со сторонами 90, 53 и 53
Найти высоту треугольника со сторонами 110, 96 и 44
Найти высоту треугольника со сторонами 63, 49 и 26
Найти высоту треугольника со сторонами 123, 121 и 38
Найти высоту треугольника со сторонами 109, 94 и 37