Рассчитать высоту треугольника со сторонами 34, 33 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{34 + 33 + 16}{2}} \normalsize = 41.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{41.5(41.5-34)(41.5-33)(41.5-16)}}{33}\normalsize = 15.7416513}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{41.5(41.5-34)(41.5-33)(41.5-16)}}{34}\normalsize = 15.2786616}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{41.5(41.5-34)(41.5-33)(41.5-16)}}{16}\normalsize = 32.4671559}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 34, 33 и 16 равна 15.7416513
Высота треугольника опущенная с вершины A на сторону BC со сторонами 34, 33 и 16 равна 15.2786616
Высота треугольника опущенная с вершины C на сторону AB со сторонами 34, 33 и 16 равна 32.4671559
Ссылка на результат
?n1=34&n2=33&n3=16
Найти высоту треугольника со сторонами 145, 106 и 63
Найти высоту треугольника со сторонами 68, 60 и 16
Найти высоту треугольника со сторонами 148, 93 и 75
Найти высоту треугольника со сторонами 118, 113 и 88
Найти высоту треугольника со сторонами 93, 80 и 73
Найти высоту треугольника со сторонами 143, 127 и 45
Найти высоту треугольника со сторонами 68, 60 и 16
Найти высоту треугольника со сторонами 148, 93 и 75
Найти высоту треугольника со сторонами 118, 113 и 88
Найти высоту треугольника со сторонами 93, 80 и 73
Найти высоту треугольника со сторонами 143, 127 и 45