Рассчитать высоту треугольника со сторонами 35, 24 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{35 + 24 + 15}{2}} \normalsize = 37}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{37(37-35)(37-24)(37-15)}}{24}\normalsize = 12.1232101}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{37(37-35)(37-24)(37-15)}}{35}\normalsize = 8.31305833}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{37(37-35)(37-24)(37-15)}}{15}\normalsize = 19.3971361}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 35, 24 и 15 равна 12.1232101
Высота треугольника опущенная с вершины A на сторону BC со сторонами 35, 24 и 15 равна 8.31305833
Высота треугольника опущенная с вершины C на сторону AB со сторонами 35, 24 и 15 равна 19.3971361
Ссылка на результат
?n1=35&n2=24&n3=15
Найти высоту треугольника со сторонами 120, 105 и 35
Найти высоту треугольника со сторонами 32, 30 и 11
Найти высоту треугольника со сторонами 95, 82 и 17
Найти высоту треугольника со сторонами 104, 99 и 67
Найти высоту треугольника со сторонами 108, 99 и 41
Найти высоту треугольника со сторонами 145, 107 и 76
Найти высоту треугольника со сторонами 32, 30 и 11
Найти высоту треугольника со сторонами 95, 82 и 17
Найти высоту треугольника со сторонами 104, 99 и 67
Найти высоту треугольника со сторонами 108, 99 и 41
Найти высоту треугольника со сторонами 145, 107 и 76