Рассчитать высоту треугольника со сторонами 35, 34 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{35 + 34 + 8}{2}} \normalsize = 38.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{38.5(38.5-35)(38.5-34)(38.5-8)}}{34}\normalsize = 7.99966208}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{38.5(38.5-35)(38.5-34)(38.5-8)}}{35}\normalsize = 7.77110031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{38.5(38.5-35)(38.5-34)(38.5-8)}}{8}\normalsize = 33.9985638}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 35, 34 и 8 равна 7.99966208
Высота треугольника опущенная с вершины A на сторону BC со сторонами 35, 34 и 8 равна 7.77110031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 35, 34 и 8 равна 33.9985638
Ссылка на результат
?n1=35&n2=34&n3=8
Найти высоту треугольника со сторонами 130, 130 и 25
Найти высоту треугольника со сторонами 118, 110 и 67
Найти высоту треугольника со сторонами 135, 122 и 107
Найти высоту треугольника со сторонами 141, 122 и 30
Найти высоту треугольника со сторонами 140, 129 и 67
Найти высоту треугольника со сторонами 148, 146 и 105
Найти высоту треугольника со сторонами 118, 110 и 67
Найти высоту треугольника со сторонами 135, 122 и 107
Найти высоту треугольника со сторонами 141, 122 и 30
Найти высоту треугольника со сторонами 140, 129 и 67
Найти высоту треугольника со сторонами 148, 146 и 105