Рассчитать высоту треугольника со сторонами 36, 24 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 24 + 22}{2}} \normalsize = 41}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{41(41-36)(41-24)(41-22)}}{24}\normalsize = 21.4435629}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{41(41-36)(41-24)(41-22)}}{36}\normalsize = 14.2957086}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{41(41-36)(41-24)(41-22)}}{22}\normalsize = 23.3929777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 24 и 22 равна 21.4435629
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 24 и 22 равна 14.2957086
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 24 и 22 равна 23.3929777
Ссылка на результат
?n1=36&n2=24&n3=22
Найти высоту треугольника со сторонами 128, 97 и 73
Найти высоту треугольника со сторонами 133, 119 и 69
Найти высоту треугольника со сторонами 88, 84 и 72
Найти высоту треугольника со сторонами 143, 111 и 42
Найти высоту треугольника со сторонами 118, 95 и 79
Найти высоту треугольника со сторонами 146, 129 и 124
Найти высоту треугольника со сторонами 133, 119 и 69
Найти высоту треугольника со сторонами 88, 84 и 72
Найти высоту треугольника со сторонами 143, 111 и 42
Найти высоту треугольника со сторонами 118, 95 и 79
Найти высоту треугольника со сторонами 146, 129 и 124