Рассчитать высоту треугольника со сторонами 36, 27 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 27 + 25}{2}} \normalsize = 44}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{44(44-36)(44-27)(44-25)}}{27}\normalsize = 24.9769166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{44(44-36)(44-27)(44-25)}}{36}\normalsize = 18.7326875}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{44(44-36)(44-27)(44-25)}}{25}\normalsize = 26.97507}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 27 и 25 равна 24.9769166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 27 и 25 равна 18.7326875
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 27 и 25 равна 26.97507
Ссылка на результат
?n1=36&n2=27&n3=25
Найти высоту треугольника со сторонами 147, 146 и 78
Найти высоту треугольника со сторонами 133, 85 и 65
Найти высоту треугольника со сторонами 75, 69 и 44
Найти высоту треугольника со сторонами 109, 88 и 40
Найти высоту треугольника со сторонами 83, 57 и 33
Найти высоту треугольника со сторонами 128, 94 и 36
Найти высоту треугольника со сторонами 133, 85 и 65
Найти высоту треугольника со сторонами 75, 69 и 44
Найти высоту треугольника со сторонами 109, 88 и 40
Найти высоту треугольника со сторонами 83, 57 и 33
Найти высоту треугольника со сторонами 128, 94 и 36