Рассчитать высоту треугольника со сторонами 36, 28 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 28 + 21}{2}} \normalsize = 42.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{42.5(42.5-36)(42.5-28)(42.5-21)}}{28}\normalsize = 20.9616922}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{42.5(42.5-36)(42.5-28)(42.5-21)}}{36}\normalsize = 16.3035383}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{42.5(42.5-36)(42.5-28)(42.5-21)}}{21}\normalsize = 27.9489229}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 28 и 21 равна 20.9616922
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 28 и 21 равна 16.3035383
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 28 и 21 равна 27.9489229
Ссылка на результат
?n1=36&n2=28&n3=21
Найти высоту треугольника со сторонами 126, 117 и 43
Найти высоту треугольника со сторонами 93, 60 и 50
Найти высоту треугольника со сторонами 130, 87 и 58
Найти высоту треугольника со сторонами 140, 123 и 101
Найти высоту треугольника со сторонами 120, 90 и 54
Найти высоту треугольника со сторонами 97, 56 и 45
Найти высоту треугольника со сторонами 93, 60 и 50
Найти высоту треугольника со сторонами 130, 87 и 58
Найти высоту треугольника со сторонами 140, 123 и 101
Найти высоту треугольника со сторонами 120, 90 и 54
Найти высоту треугольника со сторонами 97, 56 и 45