Рассчитать высоту треугольника со сторонами 36, 34 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 34 + 23}{2}} \normalsize = 46.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46.5(46.5-36)(46.5-34)(46.5-23)}}{34}\normalsize = 22.2772276}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46.5(46.5-36)(46.5-34)(46.5-23)}}{36}\normalsize = 21.0396039}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46.5(46.5-36)(46.5-34)(46.5-23)}}{23}\normalsize = 32.9315539}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 34 и 23 равна 22.2772276
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 34 и 23 равна 21.0396039
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 34 и 23 равна 32.9315539
Ссылка на результат
?n1=36&n2=34&n3=23
Найти высоту треугольника со сторонами 97, 55 и 54
Найти высоту треугольника со сторонами 140, 134 и 107
Найти высоту треугольника со сторонами 138, 132 и 49
Найти высоту треугольника со сторонами 54, 51 и 44
Найти высоту треугольника со сторонами 130, 110 и 68
Найти высоту треугольника со сторонами 108, 88 и 39
Найти высоту треугольника со сторонами 140, 134 и 107
Найти высоту треугольника со сторонами 138, 132 и 49
Найти высоту треугольника со сторонами 54, 51 и 44
Найти высоту треугольника со сторонами 130, 110 и 68
Найти высоту треугольника со сторонами 108, 88 и 39