Рассчитать высоту треугольника со сторонами 36, 34 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 34 + 27}{2}} \normalsize = 48.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48.5(48.5-36)(48.5-34)(48.5-27)}}{34}\normalsize = 25.5729121}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48.5(48.5-36)(48.5-34)(48.5-27)}}{36}\normalsize = 24.1521947}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48.5(48.5-36)(48.5-34)(48.5-27)}}{27}\normalsize = 32.2029263}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 34 и 27 равна 25.5729121
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 34 и 27 равна 24.1521947
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 34 и 27 равна 32.2029263
Ссылка на результат
?n1=36&n2=34&n3=27
Найти высоту треугольника со сторонами 107, 101 и 43
Найти высоту треугольника со сторонами 125, 118 и 56
Найти высоту треугольника со сторонами 133, 92 и 85
Найти высоту треугольника со сторонами 42, 39 и 27
Найти высоту треугольника со сторонами 49, 44 и 15
Найти высоту треугольника со сторонами 146, 120 и 113
Найти высоту треугольника со сторонами 125, 118 и 56
Найти высоту треугольника со сторонами 133, 92 и 85
Найти высоту треугольника со сторонами 42, 39 и 27
Найти высоту треугольника со сторонами 49, 44 и 15
Найти высоту треугольника со сторонами 146, 120 и 113