Рассчитать высоту треугольника со сторонами 36, 35 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 35 + 15}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-36)(43-35)(43-15)}}{35}\normalsize = 14.8377896}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-36)(43-35)(43-15)}}{36}\normalsize = 14.4256288}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-36)(43-35)(43-15)}}{15}\normalsize = 34.621509}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 35 и 15 равна 14.8377896
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 35 и 15 равна 14.4256288
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 35 и 15 равна 34.621509
Ссылка на результат
?n1=36&n2=35&n3=15
Найти высоту треугольника со сторонами 68, 68 и 3
Найти высоту треугольника со сторонами 149, 131 и 45
Найти высоту треугольника со сторонами 138, 136 и 80
Найти высоту треугольника со сторонами 142, 134 и 131
Найти высоту треугольника со сторонами 134, 131 и 18
Найти высоту треугольника со сторонами 118, 86 и 52
Найти высоту треугольника со сторонами 149, 131 и 45
Найти высоту треугольника со сторонами 138, 136 и 80
Найти высоту треугольника со сторонами 142, 134 и 131
Найти высоту треугольника со сторонами 134, 131 и 18
Найти высоту треугольника со сторонами 118, 86 и 52