Рассчитать высоту треугольника со сторонами 37, 32 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{37 + 32 + 23}{2}} \normalsize = 46}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46(46-37)(46-32)(46-23)}}{32}\normalsize = 22.8196051}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46(46-37)(46-32)(46-23)}}{37}\normalsize = 19.7358746}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46(46-37)(46-32)(46-23)}}{23}\normalsize = 31.7490157}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 37, 32 и 23 равна 22.8196051
Высота треугольника опущенная с вершины A на сторону BC со сторонами 37, 32 и 23 равна 19.7358746
Высота треугольника опущенная с вершины C на сторону AB со сторонами 37, 32 и 23 равна 31.7490157
Ссылка на результат
?n1=37&n2=32&n3=23
Найти высоту треугольника со сторонами 114, 108 и 47
Найти высоту треугольника со сторонами 144, 110 и 97
Найти высоту треугольника со сторонами 94, 58 и 46
Найти высоту треугольника со сторонами 124, 119 и 54
Найти высоту треугольника со сторонами 95, 73 и 45
Найти высоту треугольника со сторонами 91, 82 и 41
Найти высоту треугольника со сторонами 144, 110 и 97
Найти высоту треугольника со сторонами 94, 58 и 46
Найти высоту треугольника со сторонами 124, 119 и 54
Найти высоту треугольника со сторонами 95, 73 и 45
Найти высоту треугольника со сторонами 91, 82 и 41