Рассчитать высоту треугольника со сторонами 37, 35 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{37 + 35 + 4}{2}} \normalsize = 38}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{38(38-37)(38-35)(38-4)}}{35}\normalsize = 3.55757312}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{38(38-37)(38-35)(38-4)}}{37}\normalsize = 3.36527187}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{38(38-37)(38-35)(38-4)}}{4}\normalsize = 31.1287648}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 37, 35 и 4 равна 3.55757312
Высота треугольника опущенная с вершины A на сторону BC со сторонами 37, 35 и 4 равна 3.36527187
Высота треугольника опущенная с вершины C на сторону AB со сторонами 37, 35 и 4 равна 31.1287648
Ссылка на результат
?n1=37&n2=35&n3=4
Найти высоту треугольника со сторонами 99, 94 и 12
Найти высоту треугольника со сторонами 133, 81 и 80
Найти высоту треугольника со сторонами 72, 71 и 52
Найти высоту треугольника со сторонами 138, 130 и 35
Найти высоту треугольника со сторонами 40, 38 и 21
Найти высоту треугольника со сторонами 98, 77 и 49
Найти высоту треугольника со сторонами 133, 81 и 80
Найти высоту треугольника со сторонами 72, 71 и 52
Найти высоту треугольника со сторонами 138, 130 и 35
Найти высоту треугольника со сторонами 40, 38 и 21
Найти высоту треугольника со сторонами 98, 77 и 49